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ABSTRACT 

The problem of estimating the electricity consumption of 

individual appliances in a building from a limited number of 

voltage and/or current measurements in the distribution system 

has received renewed interest from the research community in 

recent years. In this paper, we present a Building-Level 

fUlly-labeled dataset for Electricity Disaggregation (BLUED). 

The dataset consists of voltage and current measurements for a 

single-family residence in the United States, sampled at 12 kHz 

for a whole week. Every state transition of each appliance in the 

home during this time was labeled and time-stamped, providing 

the necessary ground truth for the evaluation of event-based 

algorithms. With this dataset, we aim to motivate algorithm 

development and testing. The paper describes the hardware and 

software configuration, as well as the dataset’s benefits and 

limitations. We also present some of our detection results as a 

preliminary benchmark. 
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1. INTRODUCTION 
In this paper, we present a one-week dataset of residential 

electricity usage with labels for individual appliance activity. The 

labels mark when appliance state transitions occur. These 

transitions represent changes in appliance activity accompanied 

by a change in power consumption level. We frequently refer to 

these transitions, throughout the text, as events. 

Beyond detailed energy consumption information, this dataset 

could be mined for many other applications including, but not 

limited to: appliance operation patterns, security applications, 

occupancy detection, energy management, assisted living 

applications, appliance fault diagnostics, and anomaly detection. 

Parties interested in these problems include electricity consumers, 

utility and distribution companies, appliance manufacturers, and 

policy makers. 

In general, two main energy disaggregation approaches exist for 

non-intrusive load monitoring: event-based and non event-based. 

A good review of the existing approaches can be found in [12]. 

The non event-based approach attempts to directly separate the 

sources that compose the overall signal (e.g., total power 

consumption) by using techniques such as latent variable 

models [7], blind source separation [5] or time-series motif 

mining [10]. Event based approaches, on the other hand, keep 

track of each appliance state transition by means of event 

detection and classification [9]. 

For the non-event based approach, the Reference Energy 

Disaggregation Data Set REDD [6] has been released. This 

dataset provides labels for each circuit in the electrical panel of 

the home and is well-suited for validating any source-separation 

algorithm that assumes that the sources directly correspond to 

these circuits. The BLUED dataset that we present in this paper is 

different from previous work in that it provides labels 

(e.g., timestamps and appliance identifiers) for each appliance 

state transition occurring in the dataset. This dataset is relevant to 

the KDD community since, to our knowledge, it will be the first 

publically available dataset of its kind. 

The main reason for this dataset to exist is to motivate algorithm 

development and testing for the NILM community. Similar to 

what occurred in the face-detection or voice-recognition 

communities, performance comparisons are not meaningful unless 

made on common datasets using common metrics.  

The BLUED dataset is publicly available for download at 

http://nilm.cmubi.org. Raw current and voltage files along with a 

list of event timestamps are provided. 

The rest of this paper is organized as follows. Section 2 describes 

the particulars of the data collection framework used and technical 

challenges encountered. Section 3 describes the dataset in terms of 

appliances represented, power consumption, and frequency of 

events. Section 0 presents some preliminary experimental results 

on event detection, section 5 provides final thoughts and 

conclusions, and section 6 indicates future research plans.  

2. DATA COLLECTION SET-UP 
One week of voltage and current measurements was collected for 

a single family house in Pittsburgh, Pennsylvania. Data collection 

took place during October 2011. There were approximately 50 

electrical appliances in the home, and our goal was to individually 

track the electrical operation of each device, determining when 

each appliance changed its operating status (e.g., turned on or off).  
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The hardware used for creating the dataset can be grouped into 

two basic categories: a system used for collecting the aggregate 

voltage and current measurements at the main distribution panel 

and another system used for obtaining the ground truth (i.e., the 

time-stamps for each appliance state transition). Figure 1 shows 

the overall system architecture. The data streams from these two 

systems were then post-processed to correlate the appliance 

activity with the aggregate voltage and current signals. 

In this section, we describe the setup of these two systems and the 

post-processing steps that were performed. We also include a brief 

discussion of some of the technical challenges encountered during 

the data collection process. 

2.1 Measurement 
In the United States, residential buildings commonly have a 

3-wire, single-phase 240V/120V power distribution system in 

which a single (240V) primary single phase is center-tapped at the 

transformer to create two 60Hz, 120V sources and a neutral. The 

sinusoidal voltage signals on these two “live” wires have a phase 

difference of 180 degrees. In this paper, we refer to them as phase 

A and B. 

 

Figure 1 System architecture for data and ground truth 

collection. 

Voltage and current measurements were collected using a 16-Bit 

data acquisition device from National Instruments (NI USB-

9215A). We assumed that the voltage signals would be phase-

shifted copies of each other (by a half-cycle) and only sampled 

one voltage and two current signals at 12 kHz, simultaneously. 

The power consumption for the entire house was then computed 

based on these current and voltage measurements. 

To measure the electrical current, we used two QX 201-CT 

split-core current transformers from The Energy Detective1. The 

current clamps were placed around the two incoming power 

mains, as shown in the left of Figure 2. For voltage measurements, 

a voltage transformer from Pico Technology2 (PICO PROBE 

TA041) was used to step down the 120V AC voltage (to +/- 7 V 

AC). The sampled signals from these sensors were stored locally 

                                                                 
1 http://www.theenergydetective.com/ 
2 http://accessories.picotech.com/active-oscilloscope-probes.html 

on a computer. In Figure 1 this can be seen starting from the top 

of the circuit panel where the measured current and voltage 

signals (i & v) are sampled by the DAQ and saved by the 

panel-level computer. 

    

Figure 2 Left: Current clamps on the electric mains. 

Right: 37 Plug-level FireFly sensors ready for deployment. 

2.2 Ground Truth Collection 
The ground truth collection is split among three sensing 

modalities (1) plug-level meters, (2) environmental sensors and 

(3) circuit panel meters. 

Plug-level and environmental data were collected using the 

FireFly wireless sensor networking platform [4]. Each sensor 

node used a custom TDMA-based collection tree networking 

protocol designed for 802.15.4 radios that reported sensor values 

every 640ms. Each node was statically assigned a unique 

communication slot within the TDMA frame to facilitate high-

speed collision-free communication in order to minimize timing 

jitter and packet loss. A central gateway within the home 

timestamped each incoming message using the Network Time 

Protocol (NTP) and then locally stored the data, this can be seen 

in the lower half of Figure 1. 

Each plug-level power sensor (28 in total), shown in Figure 2 on 

the right, measured voltage and current at a rate of 1kHz and 

locally computed active and apparent power along with RMS 

current, RMS voltage, and frequency, all averaged over one 

second. Environmental sensors were used to infer the activity of 

appliances like overhead lights and ventilation fans, which are 

hard to meter using plug-level sensors. Each FireFly 

environmental sensor (12 total) measured light level, sound 

intensity, vibration, humidity, barometric pressure and PIR 

motion. These sensors were carefully placed to specifically target 

certain appliances. 

Appliances that were not easily metered with plug meters or 

environmental sensors (like two-phase appliances such as electric 

drying machines or appliances hard-wired to the electric panel 

such as garbage disposals) were monitored by measuring the 

current on individual sub-circuits at the distribution panel. 

RMS current for each sub-circuit was recorded at 20 Hz using 

CTs from CR Magnetics (CR 3110-3000 C1) and a 16-channel, 

1.25MS/s, 16-Bit, USB-Based DAQ (National Instruments NI 

USB-6251). This can be seen coming out of the side of the circuit 

panel in Figure 1. 

2.3 Post Processing  
A post-processing stage was necessary to fully label the captured 

data. The first step was to compute the power consumption for the 

entire house from the current and voltage measurements (see 



 

chapter 2 in [8] for technical details of this computation). We 

computed active power at a rate of 60Hz, and included these 

computed values in the published dataset.  

In order to supplement the power measurements with information 

about when each one of the appliances in the home changed its 

operating state (i.e., when events occurred), there were 

approximately 50 separate channels of data from the ground truth 

collection that needed to be merged. For each ground truth 

channel (e.g., light intensity values from an environmental sensor 

placed near a ceiling light) a list of potential events was created by 

visually inspecting and hand-labeling transitions in activity. We 

defined an event to be any change in power consumption greater 

than 30 watts and lasting at least 5 seconds. The timestamps of 

these potential events were then overlaid on the power signal for 

the whole house. Due to small time synchronization errors 

between the panel-level and appliance-level computers, it was 

necessary to adjust the timestamps of the labeled events to match 

the transitions in the aggregate power signal. This was also done 

by visual inspection. Once all of this was completed, there was a 

total of 2,355 events labeled in the dataset. 

A final visual inspection of the entire power signal was made to 

determine if there was any unlabeled activity not captured by the 

ground truth sensors. This check revealed an additional 127 events 

from unknown sources for a total of 2,482 events (904 on phase A 

and 1,578 on phase B) during the week of collection. The sensing 

infrastructure captured approximately 95% of the total number of 

events. These events with unknown sources are clearly labeled as 

such in the BLUED dataset. 

Having hypothesized that these unknown events were due to 

appliances not sensed by the ground truth sensors, we attempted 

to cluster these events based on their real and reactive power 

consumption. The result of this clustering revealed that the 127 

unknown events may be attributed to 11 distinct appliances. 

2.4 Data Collection Challenges 
During the entire data collection process, various unforeseen 

challenges were encountered. They ranged from having to 

perform circuit tracing of the whole house to Internet connectivity 

problems. We explain a few of the more prominent challenges in 

this section. 

Following data collection, we learned that the current sensors used 

for measuring the electrical current in the mains had a cutoff 

frequency of approximately 300 Hz, which meant that the 

sampled signals, although sampled at 12 kHz, would only provide 

useful information for up to the 5th harmonic of the current, 

approximately. This limits the types of algorithms that can be 

applied on this dataset. We also note that the REDD dataset, given 

that it uses the same current transformers, may suffer from the 

same limitations. To remedy this problem, higher fidelity current 

sensors will be deployed in future data collection efforts. 

As noted above, the deployment captured 95% of all the events in 

the home. The 5% that were missed were likely the result of one 

or more of multiple factors: incorrect circuit tracing, appliances 

that might have been added to the house after the sensing 

infrastructure was deployed, or simply appliances that were 

moved to different, unmetered outlets, by the occupants of the 

house. 

Also, there were no registered events for approximately 25% of 

the appliances in the house. For some appliances this was because 

they did not meet our criteria for being considered an event (30 W 

power consumption and 5 second duration, see section 2.3), while 

other appliances were not used during the week of data collection. 

This reflects real usage and suggests that one week may not be 

enough time to obtain a representative sample of all appliances. 

3. DATASET SUMMARY 
Table 1 shows the list of appliances in the home that were 

monitored, along with their average power consumption 

(estimated from turn-on events), the number of events associated 

with them and the phase (A or B) that they were feeding from. It 

is worth noting that there is a disproportionately larger number of  

Table 1 List of appliances in the dataset monitored by the 

ground truth sensing infrastructure. 

Index Name 
Average Power 
Consumption 

(W) 

Number of 
events 

Phase 

1 Desktop Lamp 30 26 B 

2 Tall Desk Lamp 30 25 B 

3 Garage Door 530 24 B 

4 Washing Machine 130-700 95 B 

5 Kitchen music 0 - - 

6 Kitchen Aid 

Chopper 
1500 16 A 

7 Tea Kettle - 0 - 

8 Toaster Oven - 0 - 

9 Fridge 120 616 A 

10 A/V Living room 45 8 B 

11 Sub-woofer Living 

room 
0 - - 

12 Computer A 60 45 B 

13 Laptop B 40 14 B 

14 Dehumidifier - 0 - 

15 Vacuum Cleaner - 0 - 

16 DVR, A/V Receiver, 

Blueray Player 

Basement 

55 34 B 

17 Sub-woofer 

Basement 
0 - - 

18 Apple TV 

Basement 
0 - - 

19 Air Compressor 1130 20 A 

20 LCD Monitor A 35 77 B 

21 TV Basement 190 54 B 

22 Harddrive B - 0 - 

23 Printer 930 150 B 

24 Hair Dryer 1600 8 A 

25 Iron 1400 40 B 

26 Empty living room 

socket 
60 2 B 

27 Empty living room 

socket 
- 0 - 

28 Monitor B 40 150 B 

29 Backyard lights 60 16 A 

30 Washroom light 110 6 A 

31 Office Lights 30 54 B 

32 Closet lights 20 22 B 

33 Upstairs hallway 

light 
25 17 B 

34 Hallways Stairs 

lights 
110 58 B 

35 Kitchen Hallway 

light 
15 6 B 

36 Kitchen overhead 

light 
65 56 B 

37 Bathroom upstairs 

lights 
65 98 A 

38 Dining room 

overhead light 
65 32 B 

39 Bedroom Lights 190 19 A 

40 Basement Light 35 39 B 

41 Microwave 1550 70 B 

42 Air Conditioner - 0 A+B 

43 Dryer - 0 A+B 



 

events associated with the refrigerator and computer equipment, 

perhaps because of their continuous mode of operation. 

In Table 1, appliances that had no events during the week have a 0 

in the “Number of events” column while appliances that did not 

pass the event criteria mentioned above have a 0 in the “Average 

power” column. This information is also represented in Figure 3. 

The top plot shows the frequency of events for each of the 

appliances and the bottom plot shows the average power 

consumption of each appliance.  

Notably absent from the list in Table 1 are the air conditioner and 

dryer. Neither of these was used during this week of data 

collection. For the air conditioner, this is not surprising since it 

was in October. For the dryer this may not be an uncommon 

experience to have a week where it is not used. This would also 

suggest that one week is not enough time to get a representative 

sampling of appliances. 

To illustrate some of the characteristics of the captured data, we 

also describe the distribution of events over time. Figure 4 shows 

a histogram of the inter-event times in the dataset, separated by 

phase. Phases A and B have very distinct characteristics. There 

are much fewer appliances connected to phase A, so it has fewer 

overall events. The refrigerator however, is on phase A, and can 

clearly be seen in the histogram as the spike at a 15-minute 

inter-event time, which is the approximate duration of the cooling 

cycle. We also note that on phase A, the longest time between any 

two events is approximately 50 minutes (the approximate time 

between refrigerator cooling cycles), but on phase B there are 

spacings in events for up to 10 hours. This is not shown on the 

histogram because of scale issues, but there are only 14 instances 

on phase B of events that occur more than 2 hours apart during the 

whole week. This corresponds to twice per day: once during the 

night while everyone is asleep and the other during the day while 

no one is home. 

Figure 5 shows an empirical cumulative distribution function 

(CDF) of the inter-event times. This graph suggests that almost 

half of the events require sub-minute resolution in order to allow 

for them to be uniquely distinguished in the dataset. 

4. EXPERIMENTAL RESULTS 
In this section we present preliminary experimental results for a 

simple event detection algorithm applied to BLUED. The event 

detection algorithm used was a modified generalize likelihood 

ratio (GLR) detector described in [2] and [3]. We present our  

 
Figure 4 Stacked inter-event time histogram. 

 

Figure 5 Empirical CDF of inter-event times 

results in Table 2 in terms of absolute number of true positives, 

false positives, and misses (TP, FP, and M, respectively). 

Note that in these numbers one can see a large difference in 

performance on each phase. The activity on phase A is well-

spaced and thus the detection rate is very high, while phase B has 

a lot of electronics and appliances that frequently overlap causing 

the degradation in detection rate. 

Table 2 GLR event detection results 

 Phase A Phase B 

TP 855 1092 

FP 18 159 

M 16 459 

We present these results as a benchmark for event detection 

performance on BLUED, and to facilitate comparisons with other 

event detection schemes. These numbers were obtained after 

doing an extensive parameter search for the GLR detector, applied 

to the entire week of data. We did not split it into training and 

testing sets, but in future algorithmic development this will be 

taken into consideration. The particular parameters selected 

depend on many performance criteria that are beyond the scope of 

this paper, but the interested reader should refer to [2]. 

5. CONCLUSIONS 
We presented a fully labeled dataset aimed at tackling the lack of 

publicly available data for event-based NILM algorithm 

development and testing. We described the data collection system, 

discussed some of its limitations and suggested improvements for 

the collection process.  

We argue that this dataset is useful for different NILM approaches 

because of the fine granularity of event labeling. Regarding the 

representativeness of this dataset, the number of appliances in this 

house may very well represent the value for the average US home. 

The 2001 Residential Energy Use Consumption Survey by the 

Energy Information Administration (EIA) provides ownership 

estimates for 42 appliances [11]. Given that the survey’s 

appliances are at a more aggregate level (e.g., lighting vs. 

individual lamps) and that the survey is over ten years old, 50 
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Figure 3 Top: Histogram of number of events for each 

appliance. Bottom: Average power consumption for each 

appliance. 
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appliances in a home is not unreasonable and seems likely for 

many homeowners. 

We recognize the importance of a publicly available dataset due to 

several challenges. As reported by many of our peers, during the 

1st International NILM Workshop [1], the inherent financial and 

time costs, as well as the lack of standardized sensing and labeling 

approaches, keep most of the data collection efforts confined in 

controlled lab environments. We believe that representative, 

whole-home datasets like the one we presented here, allow for the 

evaluation of NILM algorithms under more realistic scenarios. It 

is our hope that this dataset can enable the research community to 

compare the performance of different algorithms, in the same way 

that standardized datasets have helped in other domains. 

6. FUTURE WORK 
We plan to incrementally expand the dataset to other homes in 

order to include examples of other appliances, climate zones, 

seasons, and household compositions (e.g., families with children, 

working families, etc.). To capture a richer dataset it will also be 

necessary to monitor the homes for a much longer period of time. 

We are also developing our own detection and classification 

algorithms and plan to continue this work in parallel with the 

expansion of the dataset. 

Another major challenge for the NILM research community, 

besides the lack of reference datasets, is the need for standardized 

performance metrics. We are currently in the process of creating 

metrics for different parts of the NILM problem and using them to 

evaluate our algorithms. 
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